越来越多的多视图数据正在通过几个领域的研究发布。这种类型的数据对应于多个数据视图,每个数据视图表示相同的样本集的不同方面。我们最近提出了多SNE,T-SNE的扩展,产生了多视图数据的单一可视化。多SNE方法提供样本的低维嵌入,通过通过不同的数据视图进行迭代地更新。在这里,我们进一步扩展了多个SNE以半监督方法,通过将未标记的样本视为标记信息作为额外的数据视图来分类。我们通过在不同挑战上应用各种多视图数据集的两种方法,我们更深入地进入多SNE及其扩展,S-Multi-SNE的性能,限制和优势。我们表明,通过包括标签信息,样品的投影急剧改善,并伴随着强大的分类性能。
translated by 谷歌翻译
非线性维度降低可以通过\纺织{歧管学习}方法来执行,例如随机邻居嵌入(SNE),局部线性嵌入(LLE)和等距特征映射(ISOMAP)。这些方法旨在产生两个或三个潜在嵌入的嵌入,主要用于可视化可理解的表示数据。此稿件提出了学生的T分布式SNE(T-SNE),LLE和ISOMAP的扩展,以实现多维数量和多视图数据的可视化。多视图数据是指从相同样本生成的多种类型的数据。与通过单独可视化所获得的数据,所提出的多视图方法提供了比较通过可视化所获得的多个数据的更可理解的预测。通常可视化用于识别样本内的底层模式。通过将获得的低维嵌入从多视图歧管中的方法结合到K-Means聚类算法中,示出了准确地识别出样品的簇。通过对实际和合成数据的分析,发现所提出的多SNE方法具有最佳性能。我们进一步说明了多SNE方法对分析多OMICS单细胞数据的适用性,目的是在与健康和疾病相关的生物组织中可视化和识别细胞异质性和细胞类型。
translated by 谷歌翻译
With the advent of deep learning application on edge devices, researchers actively try to optimize their deployments on low-power and restricted memory devices. There are established compression method such as quantization, pruning, and architecture search that leverage commodity hardware. Apart from conventional compression algorithms, one may redesign the operations of deep learning models that lead to more efficient implementation. To this end, we propose EuclidNet, a compression method, designed to be implemented on hardware which replaces multiplication, $xw$, with Euclidean distance $(x-w)^2$. We show that EuclidNet is aligned with matrix multiplication and it can be used as a measure of similarity in case of convolutional layers. Furthermore, we show that under various transformations and noise scenarios, EuclidNet exhibits the same performance compared to the deep learning models designed with multiplication operations.
translated by 谷歌翻译
Recurrent neural networks (RNN) are the backbone of many text and speech applications. These architectures are typically made up of several computationally complex components such as; non-linear activation functions, normalization, bi-directional dependence and attention. In order to maintain good accuracy, these components are frequently run using full-precision floating-point computation, making them slow, inefficient and difficult to deploy on edge devices. In addition, the complex nature of these operations makes them challenging to quantize using standard quantization methods without a significant performance drop. We present a quantization-aware training method for obtaining a highly accurate integer-only recurrent neural network (iRNN). Our approach supports layer normalization, attention, and an adaptive piecewise linear (PWL) approximation of activation functions, to serve a wide range of state-of-the-art RNNs. The proposed method enables RNN-based language models to run on edge devices with $2\times$ improvement in runtime, and $4\times$ reduction in model size while maintaining similar accuracy as its full-precision counterpart.
translated by 谷歌翻译
Fine-tuning a Pre-trained Language Model (PLM) on a specific downstream task has been a well-known paradigm in Natural Language Processing. However, with the ever-growing size of PLMs, training the entire model on several downstream tasks becomes very expensive and resource-hungry. Recently, different Parameter Efficient Tuning (PET) techniques are proposed to improve the efficiency of fine-tuning PLMs. One popular category of PET methods is the low-rank adaptation methods which insert learnable truncated SVD modules into the original model either sequentially or in parallel. However, low-rank decomposition suffers from limited representation power. In this work, we address this problem using the Kronecker product instead of the low-rank representation. We introduce KronA, a Kronecker product-based adapter module for efficient fine-tuning of Transformer-based PLMs. We apply the proposed methods for fine-tuning T5 on the GLUE benchmark to show that incorporating the Kronecker-based modules can outperform state-of-the-art PET methods.
translated by 谷歌翻译
Runtime monitoring provides a more realistic and applicable alternative to verification in the setting of real neural networks used in industry. It is particularly useful for detecting out-of-distribution (OOD) inputs, for which the network was not trained and can yield erroneous results. We extend a runtime-monitoring approach previously proposed for classification networks to perception systems capable of identification and localization of multiple objects. Furthermore, we analyze its adequacy experimentally on different kinds of OOD settings, documenting the overall efficacy of our approach.
translated by 谷歌翻译
Deep Neural Networks (DNN) are becoming increasingly more important in assisted and automated driving. Using such entities which are obtained using machine learning is inevitable: tasks such as recognizing traffic signs cannot be developed reasonably using traditional software development methods. DNN however do have the problem that they are mostly black boxes and therefore hard to understand and debug. One particular problem is that they are prone to hidden backdoors. This means that the DNN misclassifies its input, because it considers properties that should not be decisive for the output. Backdoors may either be introduced by malicious attackers or by inappropriate training. In any case, detecting and removing them is important in the automotive area, as they might lead to safety violations with potentially severe consequences. In this paper, we introduce a novel method to remove backdoors. Our method works for both intentional as well as unintentional backdoors. We also do not require prior knowledge about the shape or distribution of backdoors. Experimental evidence shows that our method performs well on several medium-sized examples.
translated by 谷歌翻译
It does not matter whether it is a job interview with Tech Giants, Wall Street firms, or a small startup; all candidates want to demonstrate their best selves or even present themselves better than they really are. Meanwhile, recruiters want to know the candidates' authentic selves and detect soft skills that prove an expert candidate would be a great fit in any company. Recruiters worldwide usually struggle to find employees with the highest level of these skills. Digital footprints can assist recruiters in this process by providing candidates' unique set of online activities, while social media delivers one of the largest digital footprints to track people. In this study, for the first time, we show that a wide range of behavioral competencies consisting of 16 in-demand soft skills can be automatically predicted from Instagram profiles based on the following lists and other quantitative features using machine learning algorithms. We also provide predictions on Big Five personality traits. Models were built based on a sample of 400 Iranian volunteer users who answered an online questionnaire and provided their Instagram usernames which allowed us to crawl the public profiles. We applied several machine learning algorithms to the uniformed data. Deep learning models mostly outperformed by demonstrating 70% and 69% average Accuracy in two-level and three-level classifications respectively. Creating a large pool of people with the highest level of soft skills, and making more accurate evaluations of job candidates is possible with the application of AI on social media user-generated data.
translated by 谷歌翻译
In order to avoid conventional controlling methods which created obstacles due to the complexity of systems and intense demand on data density, developing modern and more efficient control methods are required. In this way, reinforcement learning off-policy and model-free algorithms help to avoid working with complex models. In terms of speed and accuracy, they become prominent methods because the algorithms use their past experience to learn the optimal policies. In this study, three reinforcement learning algorithms; DDPG, TD3 and SAC have been used to train Fetch robotic manipulator for four different tasks in MuJoCo simulation environment. All of these algorithms are off-policy and able to achieve their desired target by optimizing both policy and value functions. In the current study, the efficiency and the speed of these three algorithms are analyzed in a controlled environment.
translated by 谷歌翻译
DeepAngle is a machine learning-based method to determine the contact angles of different phases in the tomography images of porous materials. Measurement of angles in 3--D needs to be done within the surface perpendicular to the angle planes, and it could become inaccurate when dealing with the discretized space of the image voxels. A computationally intensive solution is to correlate and vectorize all surfaces using an adaptable grid, and then measure the angles within the desired planes. On the contrary, the present study provides a rapid and low-cost technique powered by deep learning to estimate the interfacial angles directly from images. DeepAngle is tested on both synthetic and realistic images against the direct measurement technique and found to improve the r-squared by 5 to 16% while lowering the computational cost 20 times. This rapid method is especially applicable for processing large tomography data and time-resolved images, which is computationally intensive. The developed code and the dataset are available at an open repository on GitHub (https://www.github.com/ArashRabbani/DeepAngle).
translated by 谷歌翻译